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Number of samples

Learn f minimizing

Running time




The Learning Parity Problem
Gaussian elimination

= Uses O(n) samples

* Runs in time 0(n?)
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Learning Parity with Noise

= Same setup

= But the environment 1s noisy with noise rate n

» The labels are flipped independently with probability n

* Learn f minimizing the number of samples and running time
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Learning Parity with Noise

* Can be solved using brute force algorithm that runs in time
o(2")

n

» Best known algorithm running time O(2!°97) by [Blum, Kalai,
Wasserman '03]
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Learning Parities

* Central Problem 1n Learning theory [Feldman et al ‘09]
* Coding theory

» Cryptography

* Lower bounds : Open
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Learning k-Parity

 In this paper, study the variant problem in which f 1s k-sparse 1.€.
If| =kand k K n

» First result - Learning k-Parity without noise

» Second result - Learning k-Parity with noise
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» Two approaches to learn f
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Learning k-Parity without noise

= Two approaches to learn f

Gaussian Halving
Elimination Algorithm

Sample Complexity O(n) 0 (108(2))

Time Complexity 0(n?) 0 (ng)
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Learning k-Parity without noise

» Current best trade-offs between sample complexity and
running time given by (BGM) Buhrman, Garcia-Soriano and

Matsliah (2010) in the stronger Mistake bound model.

* This paper - we improve the current best trade offs.
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Online Mistake Bound model

= Oracle provides an unlabeled example x

« Learner predicts the label f(x)

= Oracle gives the correct label f(x)

= Learner can update its solution space
depending upon the answer revealed
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Each Round

The process repeats




Online Mistake Bound model

« Mistake: f(x) # f(x)

* Learn f minimizing
* Mistake bound
* Per round running time

= Adversarial model, more difficult than PAC model [Blum’94].
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Our results for noiseless case

2
Running time: B AL (t) : 0((k_n) )

k t

k t
Mistake bound: (1 +o(1))7n+ log (k)
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Our results for noiseless case

Running time: { e"‘“-‘”} (;) : 6((%”)2) 0((;) (an)z)

Mistake bound: (1 + o(1)) an + log (D k [%] + [log (,i)l
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ldea behind the BGM algorithm

= Two approaches to learn f

Gaussian Halving
Elimination Algorithm

Sample Complexity O(n) 0 (108(2))

Time Complexity 0(n?) 0 (ng)
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Gaussian Elimination

Gaussian Elimination:
Geometrically

Consider the vector space F}

COCOON'18




Gaussian Elimination

Gaussian Elimination:
Geometrically

Consider the vector space F}

An unlabeled example x specifies
a hyper plane

COCOON'18




Gaussian Elimination
All have label 0
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Gaussian Elimination
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Gaussian Elimination:
Geometrically

Consider the vector space F}

An unlabeled example x specifies
a hyper plane

The hyperplane divides the space
Into two halves

Predict the majority — say,
predicted 1

If the true label is O, throw half
space corresponding to 1

Repeat with new example



Gaussian Elimination

* Gaussian Elimination - Analysis
= Start with one set containing 2™ vectors as possible solutions

* Predict the majority of the labels of the remaining solutions by
performing the intersection of the halfspace with the remaining
subset

= At each mistake, throw at least half of the vectors
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Gaussian Elimination

* Gaussian Elimination - Analysis

= After, at most log, 2" = n mistakes, only 1 vector remains = hidden
vector f

« Computing intersection in time O(n>) by Gaussian elimination
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Halving Algorithm

Halving Algorithm:
Geometrically

Consider all £-sparse vectors in
vector space F?
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Halving Algorithm
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Halving Algorithm:
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Halving Algorithm
» Halving Algorithm - Analysis

- Start with () sets as possible solutions such that each k-sparse vector
1s 1n one subset.

» Predict the majority of the labels of the remaining solutions by
performing the intersection of the halfspace with the remaining
subset

= At each mistake, throw at least half of the vectors
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Halving Algorithm
» Halving Algorithm - Analysis

= After, at most logz(Z) = k log n mistakes, only 1 vector remains
which 1s the hidden vector f

- Computing the intersection with all the sets in time (})
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The BGM algorithm

= Tries to balance both the extremes

* Consider a set of fewer subsets such that each k-sparse vector in at least
one subset.

» Predict the label which has more weighted majority of subsets where
weights are proportional to their sizes
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The BGM algorithm

The BGM algorithm:
Geometrically

Consider larger subsets of points
such that each k-sparse point is
present in some subset

COCOON'18




The BGM algorithm

COCOON'18

The BGM algorithm:
Geometrically

Consider larger subsets of points
such that each k-sparse point is
present in some subset

An unlabeled example x specifies
a hyper plane



The BGM algorithm

COCOON'18

The BGM algorithm:
Geometrically

Consider larger subsets of points
such that each k-sparse point is
present in some subset

An unlabeled example x specifies
a hyper plane

Once true label is revealed, throw
the irrelevant halfspace



The BGM algorithm
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The BGM algorithm:
Geometrically

Consider larger subsets of points
such that each k-sparse point is
present in some subset

An unlabeled example x specifies
a hyper plane

Once true label is revealed, throw
the irrelevant halfspace

Repeat with next example(or
hyper plane)



The BGM algorithm formally

= Initialization:

= Let f € {0,1}" be the k-sparse parity vector

“Let e = {eq4, e,,*, e, } be the set of standard basis vectors of {0,1}"
* Arbitrarily partition e into t < n parts C = Cy,Cy, -+, C;

= Let S := k-subsets of C

« For each s € S, let M, be the span of e; € s. Thus, |M| < 2kIn/t]
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The BGM algorithm formally
= On receiving an example x € {0,1}" .

= For each M., let M} := affine space of {M,} U {x = 1}

= Similarly, let M? := affine space of {M.} U {x = 0}
| M|
2

= Predict y € {0,1} such that 2565|M3/| = ZSES|M;_y|

= Note that [M%| = 0, |M| or
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The BGM algorithm formally

= On receiving answer l € {0,1}

= Update each M, = M?
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The BGM algorithm - analysis

= Mistakes:

» Total number of vectors in the beginning = () 2*M/¢

» At each mistake, throw away at least half of the vectors

* Number of mistake < log ((D ZRH) =k m +log(,)

* Running time:

« Per Round 0 ( (i) (an)Z)
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Our Algorithm

» Idea - Have slightly bigger subsets and pick slightly fewer of them

» The setup 1s same as BGM, but.....
= Partition e into T = 1000t parts C = C,Cy, -+, Cr
* Randomly pick m, 1000k-sized subsets of [T]

(1000t

"m =0 ( (1ggggfk)> ensures that with non zero probability each k-sized

1000k—k

subset of [T] 1s present in some S;

COCOON'18



Our Algorithm

 Crucial claim:

(IOOOk) e_k/4_01 (t)

(IOOOk k) - k

* The analysis 1s same as BGM

= Mistake bound = Mistake bound in BGM up to constant terms

* Running time = e k/401 5 pGM
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Relating the results to PAC model

» Standard conversion techniques [Angluin’88, Littlestone’89, Haussler’88]

= Allow our result to get an improvement in the PAC model
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Learning k-Parity with noise




Learning k-Parity with noise (£-LPN)

* Best known algorithm - Grigorescu et al. (2011)

klogn
(1 —2m)*

Time: ( k'/‘z)““"z*"(l) Samples: .w(1)

» When n - Y, G Valiant (2012) in time n%8¥. poly (1 1211)

= Barrier of ( ) in running time!

k/2

COCOON'18



Breaking the Barrier...

* We show an algorithm that for polynomially small but non trivial
range of noise rates, it 1s possible to break this barrier

1
2/5

* For example, whenn = 0 ( ) and k = Vn, then our algorithm

1
» Runs in time O ((;{’)Z)

- With O(k - n3/8) samples
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Breaking the Barrier... Algorithm

* Draw sufficiently many examples

. . . 3 : .
» GGuess a set of locations of a particular size (say 777) of the mis-labelings
and correct them

= Use the previous learner from the noiseless setting to get a candidate
parity vector

» Repeat this for every guess set of that size

* Draw few more examples and pick the candidate parity vector which
agrees with the most number of newly drawn samples
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Open Questions

= Noiseless case:

» poly(n) algorithm with O (log(’,:)) samples — attribute efficient learning
of parities

* Improving our trade-offs

* Noisy case:
» Lower bounds!
= Better algorithms [E.g., Karppa et.al. (2016)]
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Thank you




Attribute efficient learning k-Parity without noise

» Learn k-parity in polynomial time with only poly(log(',:))
samples

* Best known algorithm using O (log(’;)) samples, in time

k
0, (nE) [Spielman/
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Our Result for noisy case

Suppose k(n) = n/f(n) for some function f : N — N for which

f(n) < n/loglog n, and suppose n(n) = o(((f(n))la oz n)) for some

« € [1/2,1). Then, for constant confidence parameter, there exists an
algorithm for k-Ipn with noise rate i with running time

e~k/4.01+o(k) . (E)l_a- poly (n) and sample complexity O(k(f(n))®).

For example, consider

1 1
k =+/nand n = 275 < 38
then a = —.
4

1
In this case, the running time would be O((7)*) and the sample

3
complexity would O(k (£)*).
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Learning k-Parity without noise

» Information theoretically, O (log(’,;f)) samples
k
- Running time is 0(n*), improved to 0(nz)

= Open question to get a polynomial algorithm with O (log(’;))
samples
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Online Mistake Bound model

» Different than the “black box” model (PAC)

* Learning proceeds 1n rounds

= Each round: “Oracle” teaches the “Learner”
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Our results for noiseless case

‘\\

= Letk,t: N — N be two functions such that log logn < k(n) < t(n) <K n. Then for
everyn € N, there is an algorithm that learns k-parity in the mistake-bound model,

with mistake bound at most (1 + o( 1)) an + log ( ,i) and running time per round
—k /4. t ~ (kn 2
- e~ k/4.01 (k) : 0((7) ). N
C P

= Let k,t:N — N be two functions such that k(n) < t(n) < n. Foreveryn € N, there
is a deterministic algorithm that learns k-parity in the mistake-bound model, with

2
_ mistake bound k [%] + [lo g(;i)] and running time per round 0((,9 (an) ). Yy
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e /401.(k).0((7) ). y
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= Let k,t:N — N be two functions such that k(n) < t(n) < n. Foreveryn € N, there
is a deterministic algorithm that learns k-parity in the mistake-bound model, with

2
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