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• Number of  samples

• Running time
Learn f  minimizing



The Learning Parity Problem

Gaussian elimination 

▪ Uses 𝑂(𝑛) samples

▪ Runs in time 𝑂(𝑛3)
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Learning Parity with Noise

▪ Same setup

▪ But the environment is noisy with noise rate η

▪ The labels are flipped independently with probability η

▪ Learn f minimizing the number of  samples and running time
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Learning Parity with Noise

▪ Can be solved using brute force algorithm that runs in time 
𝐎 𝟐𝒏

▪ Best known algorithm running time 𝐎(𝟐
𝒏

𝒍𝒐𝒈 𝒏) by [Blum, Kalai, 
Wasserman '03]
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Learning Parities

▪ Central Problem in Learning theory [Feldman et al ‘09]

▪ Coding theory

▪ Cryptography

▪ Lower bounds : Open
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Learning k-Parity

▪ In this paper, study the variant problem in which 𝑓 is k-sparse i.e. 
𝑓 = 𝑘 and 𝑘 ≪ 𝑛

▪ First result - Learning k-Parity without noise

▪ Second result - Learning k-Parity with noise
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Learning k-Parity without noise

▪ Two approaches to learn 𝑓
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Learning k-Parity without noise

▪ Two approaches to learn 𝑓

Gaussian 

Elimination

Halving 

Algorithm

Sample Complexity 𝑂(𝑛) 𝑂 log 𝑛
𝑘

Time Complexity 𝑂 𝑛3
𝑂(𝑛

𝑘
2)
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Learning k-Parity without noise

▪ Current best trade-offs between sample complexity and 
running time given by (BGM) Buhrman, Garcıa-Soriano and 
Matsliah (2010) in the stronger Mistake bound model.

▪ This paper - we improve the current best trade offs.
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Each Round▪ Oracle provides an unlabeled example  𝑥

▪ Learner predicts the label ሚ𝑓(𝑥)

▪ Oracle gives the correct label 𝑓(𝑥)

▪ Learner can update its solution space 
depending upon the answer revealed

The process repeats

Online Mistake Bound model
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Online Mistake Bound model

▪ Mistake: 𝑓 𝑥 ≠ ሚ𝑓(𝑥)

▪ Learn 𝑓 minimizing

▪ Mistake bound

▪ Per round running time

▪ Adversarial model, more difficult than PAC model [Blum’94].
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Our results for noiseless case

This paper

Running time: 𝑒−𝑘/4.01 ⋅
𝑡

𝑘
⋅ ෨𝑂(

𝑘𝑛

𝑡

2

)

Mistake bound: 1 + 𝑜 1
𝑘𝑛

𝑡
+ 𝑙𝑜𝑔

𝑡

𝑘
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Our results for noiseless case

This paper BGM’10

Running time: 𝒆−𝒌/𝟒.𝟎𝟏 ⋅
𝑡

𝑘
⋅ ෨𝑂(

𝑘𝑛

𝑡

2

) 𝑂(
𝑡

𝑘

𝑘𝑛

𝑡

2

)

Mistake bound: 1 + 𝑜 1
𝑘𝑛

𝑡
+ 𝑙𝑜𝑔

𝑡

𝑘
𝑘 ⌈

𝑛

𝑡
⌉ + ⌈𝑙𝑜𝑔

𝑡

𝑘
⌉
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Idea behind the BGM algorithm

▪ Two approaches to learn 𝑓

Gaussian 

Elimination

Halving 

Algorithm

Sample Complexity 𝑂(𝑛) 𝑂 log 𝑛
𝑘

Time Complexity 𝑂 𝑛3
𝑂(𝑛

𝑘
2)
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Gaussian Elimination: 
Geometrically

Gaussian Elimination

𝑓
Consider the vector space 𝔽2

𝑛
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Gaussian Elimination: 
Geometrically

Gaussian Elimination

𝑓
Consider the vector space 𝔽2

𝑛

An unlabeled example 𝑥 specifies 
a hyper plane
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Gaussian Elimination: 
Geometrically

Gaussian Elimination

𝑓

All have label 0

All have label 1

Consider the vector space 𝔽2
𝑛

An unlabeled example 𝑥 specifies 
a hyper plane

The hyperplane divides the space 
into two halves
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Gaussian Elimination: 
Geometrically

Consider the vector space 𝔽2
𝑛

An unlabeled example 𝑥 specifies 
a hyper plane

The hyperplane divides the space 
into two halves

Predict the majority – say, 
predicted 1

If the true label is 0, throw half 
space corresponding to 1

Repeat with new example

Gaussian Elimination

𝑓
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Gaussian Elimination

▪ Gaussian Elimination - Analysis

▪ Start with one set containing 2𝑛 vectors as possible solutions

▪ Predict the majority of  the labels of  the remaining solutions by 
performing the intersection of the halfspace with the remaining 
subset

▪ At each mistake, throw at least half of the vectors
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Gaussian Elimination

▪ Gaussian Elimination - Analysis

▪ After, at most log2 2
𝑛 = 𝑛 mistakes, only 1 vector remains = hidden 

vector 𝑓

▪ Computing intersection in time O(𝑛3) by Gaussian elimination
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Halving Algorithm: 
Geometrically

Halving Algorithm

𝑓

𝑛
𝑘

many points

Consider all k-sparse vectors in 
vector space 𝔽𝑛

2
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Halving Algorithm: 
Geometrically

Consider all k-sparse vectors in 
vector space 𝔽𝑛

2

An unlabeled example 𝑥 specifies 
a hyper plane

Predict the majority – say, 
predicted 1

If the true label is 0, throw half 
space corresponding to 1

Repeat with new example

Halving Algorithm

𝑓

𝑛
𝑘

many points

All have label 0

All have label 1COCOON'18



Halving Algorithm

▪ Halving Algorithm - Analysis

▪ Start with  𝒏
𝒌

sets as possible solutions such that each k-sparse vector 
is in one subset.

▪ Predict the majority of  the labels of  the remaining solutions by 
performing the intersection of the halfspace with the remaining 
subset

▪ At each mistake, throw at least half of the vectors
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Halving Algorithm

▪ Halving Algorithm - Analysis

▪ After, at most log2
𝑛
𝑘

= 𝑘 log 𝑛 mistakes, only 1 vector remains 

which is the hidden vector 𝑓

▪ Computing the intersection with all the sets in time 𝑛
𝑘
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The BGM algorithm

▪ Tries to balance both the extremes

▪ Consider a set of  fewer subsets such that each k-sparse vector in at least 
one subset.

▪ Predict the label which has more weighted majority of subsets where 
weights are proportional to their sizes
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The BGM algorithm: 
Geometrically

The BGM algorithm

𝑓
Consider larger subsets of points 
such that each k-sparse point is 
present in some subset
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The BGM algorithm
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such that each k-sparse point is 
present in some subset
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the irrelevant halfspace
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The BGM algorithm: 
Geometrically

Consider larger subsets of points 
such that each k-sparse point is 
present in some subset

An unlabeled example 𝑥 specifies 
a hyper plane

Once true label is revealed, throw 
the irrelevant halfspace

Repeat with next example(or 
hyper plane)

The BGM algorithm

𝑓
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The BGM algorithm formally

▪ Initialization:

▪ Let 𝑓 ∈ 0,1 𝑛 be the k-sparse parity vector

▪ Let 𝑒 = {𝑒1, 𝑒2, ⋯ , 𝑒𝑛} be the set of  standard basis vectors of  0,1 𝑛

▪ Arbitrarily partition 𝑒 into 𝑡 ≤ 𝑛 parts 𝐶 = 𝐶1, 𝐶2, ⋯ , 𝐶𝑡

▪ Let 𝑆 ≔ k-subsets of  𝐶

▪ For each 𝑠 ∈ 𝑆, let 𝑀𝑠 be the span of  𝑒𝑖 ∈ 𝑠. Thus, 𝑀𝑠 ≤ 2𝑘⌈𝑛/𝑡⌉
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The BGM algorithm formally

▪ On receiving an example 𝑥 ∈ 0,1 𝑛 :

▪ For each 𝑀𝑠, let 𝑀𝑠
1 ≔ affine space of  𝑀𝑠 ∪ 𝑥 = 1

▪ Similarly, let 𝑀𝑠
0 ≔ affine space of  𝑀𝑠 ∪ {𝑥 = 0}

▪ Note that 𝑀𝑠
1 = 0, 𝑀𝑠 or 

𝑀𝑠

2

▪ Predict 𝑦 ∈ {0,1} such that  σ𝑠∈𝑆 𝑀𝑠
𝑦
≥ σ𝑠∈𝑆 𝑀𝑠

1−𝑦
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The BGM algorithm formally

▪ On receiving answer 𝑙 ∈ 0,1 :

▪ Update each 𝑀𝑠 = 𝑀𝑠
𝑧
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The BGM algorithm - analysis

▪ Mistakes:

▪ Total number of  vectors in the beginning = 𝑡
𝑘
2𝑘⌈𝑛/𝑡⌉

▪ At each mistake, throw away at least half  of  the vectors

▪ Number of  mistake ≤ log 𝑡
𝑘
2
𝑘

𝑛

𝑡 = 𝒌
𝒏

𝒕
+ 𝒍𝒐𝒈 𝒕

𝒌

▪ Running time:

▪ Per Round   𝐎 𝒕
𝒌

𝒌𝒏

𝒕

𝟐
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Our Algorithm

▪ Idea - Have slightly bigger subsets and pick slightly fewer of  them

▪ The setup is same as BGM, but…..

▪ Partition 𝑒 into 𝑻 = 𝟏𝟎𝟎𝟎𝒕 parts 𝐶 = 𝐶1, 𝐶2, ⋯ , 𝐶𝑇

▪ Randomly pick 𝑚, 𝟏𝟎𝟎𝟎𝒌-sized subsets of  [𝑇]

▪𝑚 = 𝑶
𝟏𝟎𝟎𝟎𝒕
𝟏𝟎𝟎𝟎𝒌

𝟏𝟎𝟎𝟎𝒕−𝒌
𝟏𝟎𝟎𝟎𝒌−𝒌

ensures that with non zero probability each 𝒌-sized 

subset of  [𝑇] is present in some 𝑆𝑖
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Our Algorithm

▪ Crucial claim:
𝑻

𝟏𝟎𝟎𝟎𝒌
𝑻−𝒌

𝟏𝟎𝟎𝟎𝒌−𝒌

≤ 𝒆−𝒌/𝟒.𝟎𝟏
𝒕

𝒌

▪ The analysis is same as BGM

▪ Mistake bound = Mistake bound in BGM up to constant terms

▪ Running time = 𝒆−𝒌/𝟒.𝟎𝟏 × BGM
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Relating the results to PAC model

▪ Standard conversion techniques [Angluin’88, Littlestone’89, Haussler’88]

▪ Allow our result to get an improvement in the PAC model
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Learning k-Parity with noise (k-LPN)

▪ Best known algorithm - Grigorescu et al. (2011) 

Time: 𝒏
𝒌/𝟐

1+𝟒𝜼2+o(1) Samples: 
𝒌 𝐥𝐨𝐠 𝒏

𝟏 −𝟐𝜼 𝟐 . 𝝎(𝟏)

▪ When 𝜂 → ½, G.Valiant (2012) in time 𝒏𝟎.𝟖𝒌. 𝒑𝒐𝒍𝒚
𝟏

𝟏−𝟐𝜼

▪ Barrier of  𝒏
𝒌/𝟐

in running time!
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Breaking the Barrier…

▪ We show an algorithm that for polynomially small but non trivial 
range of  noise rates, it is possible to break this barrier

▪ For example, when 𝜂 = Θ
1

𝑛2/5
and 𝑘 = √𝑛, then our algorithm

▪ Runs in time 𝑶 𝒏
𝒌

𝟏

𝟒

▪ With 𝐎 𝒌 ⋅ 𝒏𝟑/𝟖 samples 

COCOON'18



Breaking the Barrier… Algorithm

▪ Draw sufficiently many examples

▪ Guess a set of locations of  a particular size (say 
3𝜂

2
) of  the mis-labelings

and correct them

▪ Use the previous learner from the noiseless setting to get a  candidate 
parity vector

▪ Repeat this for every guess set of  that size

▪ Draw few more examples and pick the candidate parity vector which 
agrees with the most number of  newly drawn samples 
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Open Questions

▪ Noiseless case:

▪ poly(n) algorithm with 𝑂 log 𝑛
𝑘

samples – attribute efficient learning 

of  parities

▪ Improving our trade-offs

▪ Noisy case:

▪ Lower bounds!

▪ Better algorithms [E.g., Karppa et.al. (2016)]

COCOON'18



Thank you



Attribute efficient learning k-Parity without noise

▪ Learn k-parity in polynomial time with only 𝒑𝒐𝒍𝒚(𝐥𝐨𝐠 𝒏
𝒌
)

samples

• Best known algorithm using 𝑂 log 𝑛
𝑘

samples, in time 

𝑂 𝑛
𝑘

2 [Spielman]
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Our Result for noisy case
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Learning k-Parity without noise

▪ Information theoretically, 𝑂 log 𝑛
𝑘

samples 

▪ Running time is O 𝑛𝑘 , improved to O 𝑛
𝑘

2

▪ Open question to get a polynomial algorithm with 𝑂 log 𝑛
𝑘

samples 
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Online Mistake Bound model

▪ Different than the “black box” model (PAC)

▪ Learning proceeds in rounds

▪ Each round: “Oracle” teaches the “Learner”
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Our results for noiseless case

▪ Let 𝑘, 𝑡: ℕ → ℕ be two functions such that 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 ≪ 𝑘 𝑛 ≪ 𝑡 𝑛 ≪ 𝑛. Then for 
every 𝑛 ∈ ℕ, there is an algorithm that learns k-parity in the mistake-bound model, 

with mistake bound at most 1 + 𝑜 1
𝑘𝑛

𝑡
+ 𝑙𝑜𝑔 𝑡

𝑘
and running time per round 

𝑒−𝑘/4.01 ⋅ 𝑡
𝑘
⋅ ෨𝑂(

𝑘𝑛

𝑡

2
).

▪ Let 𝑘, 𝑡: ℕ → ℕ be two functions such that 𝑘 𝑛 ≤ 𝑡 𝑛 ≤ 𝑛. For every 𝑛 ∈ ℕ, there 
is a deterministic algorithm that learns k-parity in the mistake-bound model, with 

mistake bound  𝑘 ⌈
𝑛

𝑡
⌉ + ⌈𝑙𝑜𝑔 𝑡

𝑘
⌉ and running time per round 𝑂( 𝑡

𝑘

𝑘𝑛

𝑡

2
).

BGM’10
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