
Improved learning of k-parities

Arnab Bhattacharyya Ameet Gadekar Ninad Rajgopal

Indian Institute of Science
India

Aalto University
Finland

University of Oxford
UK

COCOON, Qingdao, China, July 2018

The Learning Parity Problem

Hidden Vector fPush

COCOON'18

The Learning Parity Problem

Hidden Vector f

Pop

1
1

0

0

1

1

Push

COCOON'18

The Learning Parity Problem

Hidden Vector f

Pop

1
1

0

0

1

1

Push

COCOON'18

The Learning Parity Problem

Hidden Vector f

Pop

Push

COCOON'18

The Learning Parity Problem

Hidden Vector f

Pop

Uniformly Random

Push

COCOON'18

The Learning Parity Problem

Hidden Vector f

Pop

Uniformly Random

𝑙 = < 𝑓, 𝑥 >

Push

COCOON'18

The Learning Parity Problem

Hidden Vector f

Pop

Uniformly Random

𝑙 = < 𝑓, 𝑥 >

f : Parity Vector

Push

COCOON'18

The Learning Parity Problem

Hidden Vector f

Pop

Uniformly Random

𝑙 = < 𝑓, 𝑥 >

f : Parity Vector
Learn f

Push

COCOON'18

• Number of samples

• Running time
Learn f minimizing

The Learning Parity Problem

Gaussian elimination

▪ Uses 𝑂(𝑛) samples

▪ Runs in time 𝑂(𝑛3)

COCOON'18

Learning Parity with Noise

▪ Same setup

▪ But the environment is noisy with noise rate η

▪ The labels are flipped independently with probability η

▪ Learn f minimizing the number of samples and running time

COCOON'18

Learning Parity with Noise

▪ Can be solved using brute force algorithm that runs in time
𝐎 𝟐𝒏

▪ Best known algorithm running time 𝐎(𝟐
𝒏

𝒍𝒐𝒈 𝒏) by [Blum, Kalai,
Wasserman '03]

COCOON'18

Learning Parities

▪ Central Problem in Learning theory [Feldman et al ‘09]

▪ Coding theory

▪ Cryptography

▪ Lower bounds : Open

COCOON'18

Learning k-Parity

▪ In this paper, study the variant problem in which 𝑓 is k-sparse i.e.
𝑓 = 𝑘 and 𝑘 ≪ 𝑛

▪ First result - Learning k-Parity without noise

▪ Second result - Learning k-Parity with noise

COCOON'18

Learning k-Parity without noise

Learning k-Parity without noise

▪ Two approaches to learn 𝑓

COCOON'18

Learning k-Parity without noise

▪ Two approaches to learn 𝑓

Gaussian

Elimination

Halving

Algorithm

Sample Complexity 𝑂(𝑛) 𝑂 log 𝑛
𝑘

Time Complexity 𝑂 𝑛3
𝑂(𝑛

𝑘
2)

COCOON'18

Learning k-Parity without noise

▪ Current best trade-offs between sample complexity and
running time given by (BGM) Buhrman, Garcıa-Soriano and
Matsliah (2010) in the stronger Mistake bound model.

▪ This paper - we improve the current best trade offs.

COCOON'18

Each Round▪ Oracle provides an unlabeled example 𝑥

▪ Learner predicts the label ሚ𝑓(𝑥)

▪ Oracle gives the correct label 𝑓(𝑥)

▪ Learner can update its solution space
depending upon the answer revealed

The process repeats

Online Mistake Bound model

COCOON'18

Online Mistake Bound model

▪ Mistake: 𝑓 𝑥 ≠ ሚ𝑓(𝑥)

▪ Learn 𝑓 minimizing

▪ Mistake bound

▪ Per round running time

▪ Adversarial model, more difficult than PAC model [Blum’94].

COCOON'18

Our results for noiseless case

This paper

Running time: 𝑒−𝑘/4.01 ⋅
𝑡

𝑘
⋅ ෨𝑂(

𝑘𝑛

𝑡

2

)

Mistake bound: 1 + 𝑜 1
𝑘𝑛

𝑡
+ 𝑙𝑜𝑔

𝑡

𝑘

COCOON'18

Our results for noiseless case

This paper BGM’10

Running time: 𝒆−𝒌/𝟒.𝟎𝟏 ⋅
𝑡

𝑘
⋅ ෨𝑂(

𝑘𝑛

𝑡

2

) 𝑂(
𝑡

𝑘

𝑘𝑛

𝑡

2

)

Mistake bound: 1 + 𝑜 1
𝑘𝑛

𝑡
+ 𝑙𝑜𝑔

𝑡

𝑘
𝑘 ⌈

𝑛

𝑡
⌉ + ⌈𝑙𝑜𝑔

𝑡

𝑘
⌉

COCOON'18

Idea behind the BGM algorithm

▪ Two approaches to learn 𝑓

Gaussian

Elimination

Halving

Algorithm

Sample Complexity 𝑂(𝑛) 𝑂 log 𝑛
𝑘

Time Complexity 𝑂 𝑛3
𝑂(𝑛

𝑘
2)

COCOON'18

Gaussian Elimination:
Geometrically

Gaussian Elimination

𝑓
Consider the vector space 𝔽2

𝑛

COCOON'18

Gaussian Elimination:
Geometrically

Gaussian Elimination

𝑓
Consider the vector space 𝔽2

𝑛

An unlabeled example 𝑥 specifies
a hyper plane

COCOON'18

Gaussian Elimination:
Geometrically

Gaussian Elimination

𝑓

All have label 0

All have label 1

Consider the vector space 𝔽2
𝑛

An unlabeled example 𝑥 specifies
a hyper plane

The hyperplane divides the space
into two halves

COCOON'18

Gaussian Elimination:
Geometrically

Gaussian Elimination

𝑓

All have label 0

All have label 1

Consider the vector space 𝔽2
𝑛

An unlabeled example 𝑥 specifies
a hyper plane

The hyperplane divides the space
into two halves

Predict the majority – say,
predicted 1

COCOON'18

Gaussian Elimination:
Geometrically

Gaussian Elimination

𝑓
Consider the vector space 𝔽2

𝑛

An unlabeled example 𝑥 specifies
a hyper plane

The hyperplane divides the space
into two halves

Predict the majority – say,
predicted 1

If the true label is 0, throw half
space corresponding to 1

COCOON'18

Gaussian Elimination:
Geometrically

Consider the vector space 𝔽2
𝑛

An unlabeled example 𝑥 specifies
a hyper plane

The hyperplane divides the space
into two halves

Predict the majority – say,
predicted 1

If the true label is 0, throw half
space corresponding to 1

Repeat with new example

Gaussian Elimination

𝑓

COCOON'18

Gaussian Elimination

▪ Gaussian Elimination - Analysis

▪ Start with one set containing 2𝑛 vectors as possible solutions

▪ Predict the majority of the labels of the remaining solutions by
performing the intersection of the halfspace with the remaining
subset

▪ At each mistake, throw at least half of the vectors

COCOON'18

Gaussian Elimination

▪ Gaussian Elimination - Analysis

▪ After, at most log2 2
𝑛 = 𝑛 mistakes, only 1 vector remains = hidden

vector 𝑓

▪ Computing intersection in time O(𝑛3) by Gaussian elimination

COCOON'18

Halving Algorithm:
Geometrically

Halving Algorithm

𝑓

𝑛
𝑘

many points

Consider all k-sparse vectors in
vector space 𝔽𝑛

2

COCOON'18

Halving Algorithm:
Geometrically

Halving Algorithm

𝑓

𝑛
𝑘

many points

All have label 0

All have label 1

Consider all k-sparse vectors in
vector space 𝔽𝑛

2

An unlabeled example 𝑥 specifies
a hyper plane

COCOON'18

Halving Algorithm:
Geometrically

Consider all k-sparse vectors in
vector space 𝔽𝑛

2

An unlabeled example 𝑥 specifies
a hyper plane

Predict the majority – say,
predicted 1

If the true label is 0, throw half
space corresponding to 1

Repeat with new example

Halving Algorithm

𝑓

𝑛
𝑘

many points

All have label 0

All have label 1COCOON'18

Halving Algorithm

▪ Halving Algorithm - Analysis

▪ Start with 𝒏
𝒌

sets as possible solutions such that each k-sparse vector
is in one subset.

▪ Predict the majority of the labels of the remaining solutions by
performing the intersection of the halfspace with the remaining
subset

▪ At each mistake, throw at least half of the vectors

COCOON'18

Halving Algorithm

▪ Halving Algorithm - Analysis

▪ After, at most log2
𝑛
𝑘

= 𝑘 log 𝑛 mistakes, only 1 vector remains

which is the hidden vector 𝑓

▪ Computing the intersection with all the sets in time 𝑛
𝑘

COCOON'18

The BGM algorithm

▪ Tries to balance both the extremes

▪ Consider a set of fewer subsets such that each k-sparse vector in at least
one subset.

▪ Predict the label which has more weighted majority of subsets where
weights are proportional to their sizes

COCOON'18

The BGM algorithm:
Geometrically

The BGM algorithm

𝑓
Consider larger subsets of points
such that each k-sparse point is
present in some subset

COCOON'18

The BGM algorithm:
Geometrically

The BGM algorithm

𝑓
Consider larger subsets of points
such that each k-sparse point is
present in some subset

An unlabeled example 𝑥 specifies
a hyper plane

COCOON'18

The BGM algorithm:
Geometrically

The BGM algorithm

𝑓
Consider larger subsets of points
such that each k-sparse point is
present in some subset

An unlabeled example 𝑥 specifies
a hyper plane

Once true label is revealed, throw
the irrelevant halfspace

COCOON'18

The BGM algorithm:
Geometrically

Consider larger subsets of points
such that each k-sparse point is
present in some subset

An unlabeled example 𝑥 specifies
a hyper plane

Once true label is revealed, throw
the irrelevant halfspace

Repeat with next example(or
hyper plane)

The BGM algorithm

𝑓

COCOON'18

The BGM algorithm formally

▪ Initialization:

▪ Let 𝑓 ∈ 0,1 𝑛 be the k-sparse parity vector

▪ Let 𝑒 = {𝑒1, 𝑒2, ⋯ , 𝑒𝑛} be the set of standard basis vectors of 0,1 𝑛

▪ Arbitrarily partition 𝑒 into 𝑡 ≤ 𝑛 parts 𝐶 = 𝐶1, 𝐶2, ⋯ , 𝐶𝑡

▪ Let 𝑆 ≔ k-subsets of 𝐶

▪ For each 𝑠 ∈ 𝑆, let 𝑀𝑠 be the span of 𝑒𝑖 ∈ 𝑠. Thus, 𝑀𝑠 ≤ 2𝑘⌈𝑛/𝑡⌉

COCOON'18

The BGM algorithm formally

▪ On receiving an example 𝑥 ∈ 0,1 𝑛 :

▪ For each 𝑀𝑠, let 𝑀𝑠
1 ≔ affine space of 𝑀𝑠 ∪ 𝑥 = 1

▪ Similarly, let 𝑀𝑠
0 ≔ affine space of 𝑀𝑠 ∪ {𝑥 = 0}

▪ Note that 𝑀𝑠
1 = 0, 𝑀𝑠 or

𝑀𝑠

2

▪ Predict 𝑦 ∈ {0,1} such that σ𝑠∈𝑆 𝑀𝑠
𝑦
≥ σ𝑠∈𝑆 𝑀𝑠

1−𝑦

COCOON'18

The BGM algorithm formally

▪ On receiving answer 𝑙 ∈ 0,1 :

▪ Update each 𝑀𝑠 = 𝑀𝑠
𝑧

COCOON'18

The BGM algorithm - analysis

▪ Mistakes:

▪ Total number of vectors in the beginning = 𝑡
𝑘
2𝑘⌈𝑛/𝑡⌉

▪ At each mistake, throw away at least half of the vectors

▪ Number of mistake ≤ log 𝑡
𝑘
2
𝑘

𝑛

𝑡 = 𝒌
𝒏

𝒕
+ 𝒍𝒐𝒈 𝒕

𝒌

▪ Running time:

▪ Per Round 𝐎 𝒕
𝒌

𝒌𝒏

𝒕

𝟐

COCOON'18

Our Algorithm

▪ Idea - Have slightly bigger subsets and pick slightly fewer of them

▪ The setup is same as BGM, but…..

▪ Partition 𝑒 into 𝑻 = 𝟏𝟎𝟎𝟎𝒕 parts 𝐶 = 𝐶1, 𝐶2, ⋯ , 𝐶𝑇

▪ Randomly pick 𝑚, 𝟏𝟎𝟎𝟎𝒌-sized subsets of [𝑇]

▪𝑚 = 𝑶
𝟏𝟎𝟎𝟎𝒕
𝟏𝟎𝟎𝟎𝒌

𝟏𝟎𝟎𝟎𝒕−𝒌
𝟏𝟎𝟎𝟎𝒌−𝒌

ensures that with non zero probability each 𝒌-sized

subset of [𝑇] is present in some 𝑆𝑖

COCOON'18

Our Algorithm

▪ Crucial claim:
𝑻

𝟏𝟎𝟎𝟎𝒌
𝑻−𝒌

𝟏𝟎𝟎𝟎𝒌−𝒌

≤ 𝒆−𝒌/𝟒.𝟎𝟏
𝒕

𝒌

▪ The analysis is same as BGM

▪ Mistake bound = Mistake bound in BGM up to constant terms

▪ Running time = 𝒆−𝒌/𝟒.𝟎𝟏 × BGM

COCOON'18

Relating the results to PAC model

▪ Standard conversion techniques [Angluin’88, Littlestone’89, Haussler’88]

▪ Allow our result to get an improvement in the PAC model

COCOON'18

Learning k-Parity with noise

Learning k-Parity with noise (k-LPN)

▪ Best known algorithm - Grigorescu et al. (2011)

Time: 𝒏
𝒌/𝟐

1+𝟒𝜼2+o(1) Samples:
𝒌 𝐥𝐨𝐠 𝒏

𝟏 −𝟐𝜼 𝟐 . 𝝎(𝟏)

▪ When 𝜂 → ½, G.Valiant (2012) in time 𝒏𝟎.𝟖𝒌. 𝒑𝒐𝒍𝒚
𝟏

𝟏−𝟐𝜼

▪ Barrier of 𝒏
𝒌/𝟐

in running time!

COCOON'18

Breaking the Barrier…

▪ We show an algorithm that for polynomially small but non trivial
range of noise rates, it is possible to break this barrier

▪ For example, when 𝜂 = Θ
1

𝑛2/5
and 𝑘 = √𝑛, then our algorithm

▪ Runs in time 𝑶 𝒏
𝒌

𝟏

𝟒

▪ With 𝐎 𝒌 ⋅ 𝒏𝟑/𝟖 samples

COCOON'18

Breaking the Barrier… Algorithm

▪ Draw sufficiently many examples

▪ Guess a set of locations of a particular size (say
3𝜂

2
) of the mis-labelings

and correct them

▪ Use the previous learner from the noiseless setting to get a candidate
parity vector

▪ Repeat this for every guess set of that size

▪ Draw few more examples and pick the candidate parity vector which
agrees with the most number of newly drawn samples

COCOON'18

Open Questions

▪ Noiseless case:

▪ poly(n) algorithm with 𝑂 log 𝑛
𝑘

samples – attribute efficient learning

of parities

▪ Improving our trade-offs

▪ Noisy case:

▪ Lower bounds!

▪ Better algorithms [E.g., Karppa et.al. (2016)]

COCOON'18

Thank you

Attribute efficient learning k-Parity without noise

▪ Learn k-parity in polynomial time with only 𝒑𝒐𝒍𝒚(𝐥𝐨𝐠 𝒏
𝒌
)

samples

• Best known algorithm using 𝑂 log 𝑛
𝑘

samples, in time

𝑂 𝑛
𝑘

2 [Spielman]

COCOON'18

Our Result for noisy case

COCOON'18

Learning k-Parity without noise

▪ Information theoretically, 𝑂 log 𝑛
𝑘

samples

▪ Running time is O 𝑛𝑘 , improved to O 𝑛
𝑘

2

▪ Open question to get a polynomial algorithm with 𝑂 log 𝑛
𝑘

samples

COCOON'18

Online Mistake Bound model

▪ Different than the “black box” model (PAC)

▪ Learning proceeds in rounds

▪ Each round: “Oracle” teaches the “Learner”

COCOON'18

Our results for noiseless case

▪ Let 𝑘, 𝑡: ℕ → ℕ be two functions such that 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 ≪ 𝑘 𝑛 ≪ 𝑡 𝑛 ≪ 𝑛. Then for
every 𝑛 ∈ ℕ, there is an algorithm that learns k-parity in the mistake-bound model,

with mistake bound at most 1 + 𝑜 1
𝑘𝑛

𝑡
+ 𝑙𝑜𝑔 𝑡

𝑘
and running time per round

𝑒−𝑘/4.01 ⋅ 𝑡
𝑘
⋅ ෨𝑂(

𝑘𝑛

𝑡

2
).

▪ Let 𝑘, 𝑡: ℕ → ℕ be two functions such that 𝑘 𝑛 ≤ 𝑡 𝑛 ≤ 𝑛. For every 𝑛 ∈ ℕ, there
is a deterministic algorithm that learns k-parity in the mistake-bound model, with

mistake bound 𝑘 ⌈
𝑛

𝑡
⌉ + ⌈𝑙𝑜𝑔 𝑡

𝑘
⌉ and running time per round 𝑂(𝑡

𝑘

𝑘𝑛

𝑡

2
).

BGM’10

COCOON'18

Our results for noiseless case

▪ Let 𝑘, 𝑡: ℕ → ℕ be two functions such that 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 ≪ 𝑘 𝑛 ≪ 𝑡 𝑛 ≪ 𝑛. Then for
every 𝑛 ∈ ℕ, there is an algorithm that learns k-parity in the mistake-bound model,

with mistake bound at most 1 + 𝑜 1
𝑘𝑛

𝑡
+ 𝑙𝑜𝑔 𝑡

𝑘
and running time per round

𝑒−𝑘/4.01 ⋅ 𝑡
𝑘
⋅ ෨𝑂(

𝑘𝑛

𝑡

2
).

▪ Let 𝑘, 𝑡: ℕ → ℕ be two functions such that 𝑘 𝑛 ≤ 𝑡 𝑛 ≤ 𝑛. For every 𝑛 ∈ ℕ, there
is a deterministic algorithm that learns k-parity in the mistake-bound model, with

mistake bound 𝑘 ⌈
𝑛

𝑡
⌉ + ⌈𝑙𝑜𝑔 𝑡

𝑘
⌉ and running time per round 𝑂(𝑡

𝑘

𝑘𝑛

𝑡

2
).

BGM’10

COCOON'18

Add a Slide Title - 2

COCOON'18

	Slide 1: Improved learning of k-parities
	Slide 2: The Learning Parity Problem
	Slide 3: The Learning Parity Problem
	Slide 4: The Learning Parity Problem
	Slide 5: The Learning Parity Problem
	Slide 6: The Learning Parity Problem
	Slide 7: The Learning Parity Problem
	Slide 8: The Learning Parity Problem
	Slide 9: The Learning Parity Problem
	Slide 10
	Slide 11: The Learning Parity Problem
	Slide 12: Learning Parity with Noise
	Slide 13: Learning Parity with Noise
	Slide 14: Learning Parities
	Slide 15: Learning k-Parity
	Slide 16: Learning k-Parity without noise
	Slide 17: Learning k-Parity without noise
	Slide 18: Learning k-Parity without noise
	Slide 19: Learning k-Parity without noise
	Slide 20: Each Round
	Slide 21: Online Mistake Bound model
	Slide 22: Our results for noiseless case
	Slide 23: Our results for noiseless case
	Slide 24: Idea behind the BGM algorithm
	Slide 25: Gaussian Elimination: Geometrically
	Slide 26: Gaussian Elimination: Geometrically
	Slide 27: Gaussian Elimination: Geometrically
	Slide 28: Gaussian Elimination: Geometrically
	Slide 29: Gaussian Elimination: Geometrically
	Slide 30: Gaussian Elimination: Geometrically
	Slide 31: Gaussian Elimination
	Slide 32: Gaussian Elimination
	Slide 33: Halving Algorithm: Geometrically
	Slide 34: Halving Algorithm: Geometrically
	Slide 35: Halving Algorithm: Geometrically
	Slide 36: Halving Algorithm
	Slide 37: Halving Algorithm
	Slide 38: The BGM algorithm
	Slide 39: The BGM algorithm: Geometrically
	Slide 40: The BGM algorithm: Geometrically
	Slide 41: The BGM algorithm: Geometrically
	Slide 42: The BGM algorithm: Geometrically
	Slide 43: The BGM algorithm formally
	Slide 44: The BGM algorithm formally
	Slide 45: The BGM algorithm formally
	Slide 46: The BGM algorithm - analysis
	Slide 47: Our Algorithm
	Slide 48: Our Algorithm
	Slide 49: Relating the results to PAC model
	Slide 50: Learning k-Parity with noise
	Slide 51: Learning k-Parity with noise (k-LPN)
	Slide 52: Breaking the Barrier…
	Slide 53: Breaking the Barrier… Algorithm
	Slide 54: Open Questions
	Slide 55: Thank you
	Slide 56: Attribute efficient learning k-Parity without noise
	Slide 57: Our Result for noisy case
	Slide 58: Learning k-Parity without noise
	Slide 59: Online Mistake Bound model
	Slide 60: Our results for noiseless case
	Slide 61: Our results for noiseless case
	Slide 62: Add a Slide Title - 2

