Improved learning of k-parities

Arnab Bhattacharyya	Ameet Gadekar	Ninad Rajgopal
Indian Institute of Science India	Aalto University	University of Oxford
Finland	UK	

COCOON, Qingdao, China, July 2018

The Learning Parity Problem

Push

Hidden Vector f

The Learning Parity Problem

The Learning Parity Problem

f : Parity Vector

The $\mid \quad$ Learn $f \quad$ y Problem

Learn f minimizing

Number of samples
Running time

The Learning Parity Problem

Gaussian elimination

- Uses $O(n)$ samples
- Runs in time $O\left(n^{3}\right)$

Learning Parity with Noise

- Same setup
- But the environment is noisy with noise rate $\boldsymbol{\eta}$
- The labels are flipped independently with probability $\boldsymbol{\eta}$
- Learn f minimizing the number of samples and running time

Learning Parity with Noise

- Can be solved using brute force algorithm that runs in time $0\left(2^{n}\right)$
- Best known algorithm running time $\mathbf{O}\left(2^{\frac{n}{\log n}}\right)$ by [Blum, Kalai, Wasserman '03]

Learning Parities

- Central Problem in Learning theory [Feldman et al '09]
- Coding theory
- Cryptography
- Lower bounds : Open

Learning \underline{k}-Parity

- In this paper, study the variant problem in which f is k-sparse i.e. $|f|=k$ and $k \ll n$
- First result - Learning k-Parity without noise
- Second result - Learning k-Parity with noise

Learning k-Parity without noise

Learning k-Parity without noise

- Two approaches to learn f

Learning k-Parity without noise

- Two approaches to learn f

	Gaussian Elimination	Halving Algorithm
Sample Complexity	$O(n)$	$O\left(\log \binom{n}{k}\right)$
Time Complexity	$O\left(n^{3}\right)$	$O\left(n^{\frac{k}{2}}\right)$

Learning k-Parity without noise

- Current best trade-offs between sample complexity and running time given by (BGM) Buhrman, Garcia-Soriano and Matsliah (2010) in the stronger Mistake bound model.
- This paper - we improve the current best trade offs.

Online Mistake Bound model

- Oracle provides an unlabeled example x

Each Round

The process repeats

- Learner predicts the label $\tilde{f}(x)$
- Oracle gives the correct label $f(x)$
- Learner can update its solution space depending upon the answer revealed cocoÓn'18

Online Mistake Bound model

- Mistake: $f(x) \neq \tilde{f}(x)$
- Learn f minimizing
- Mistake bound
- Per round running time
- Adversarial model, more difficult than PAC model [Blum'94].

Our results for noiseless case

	This paper
Running time:	$e^{-k / 4.01} \cdot\binom{t}{k} \cdot \tilde{o}\left(\left(\frac{k n}{t}\right)^{2}\right)$
Mistake bound:	$(1+o(1)) \frac{k n}{t}+\log \binom{t}{k}$

Our results for noiseless case

	This paper	BGM $^{\prime} 10$
Running time:	$e^{-k / 4.01} \cdot\binom{t}{k} \cdot \tilde{O}\left(\left(\frac{k n}{t}\right)^{2}\right)$	$\left.O\binom{t}{k}\left(\frac{k n}{t}\right)^{2}\right)$
Mistake bound:	$(1+o(1)) \frac{k n}{t}+\log \binom{t}{k}$	$k\left\lceil\frac{n}{t}\right\rceil+\left\lceil\log \binom{t}{k}\right\rceil$

Idea behind the BGM algorithm

- Two approaches to learn f

	Gaussian Elimination	Halving Algorithm
Sample Complexity	$O(n)$	$O\left(\log \binom{n}{k}\right.$
Time Complexity	$O\left(n^{3}\right)$	$O\left(n^{\frac{k}{2}}\right)$

Gaussian Elimination

Gaussian Elimination: Geometrically

Consider the vector space \mathbb{F}_{2}^{n}

Gaussian Elimination

Gaussian Elimination: Geometrically

Consider the vector space \mathbb{F}_{2}^{n}
An unlabeled example x specifies a hyper plane

Gaussian Elimination

Gaussian Elimination: Geometrically
Consider the vector space \mathbb{F}_{2}^{n}
An unlabeled example x specifies a hyper plane
The hyperplane divides the space into two halves

Gaussian Elimination

Gaussian Elimination: Geometrically

Consider the vector space \mathbb{F}_{2}^{n}
An unlabeled example x specifies a hyper plane
The hyperplane divides the space into two halves

Predict the majority - say, predicted 1

Gaussian Elimination

Gaussian Elimination: Geometrically

Consider the vector space \mathbb{F}_{2}^{n}
An unlabeled example x specifies a hyper plane
The hyperplane divides the space into two halves

Predict the majority - say, predicted 1
If the true label is 0 , throw half space corresponding to 1

Gaussian Elimination

Gaussian Elimination: Geometrically

Consider the vector space \mathbb{F}_{2}^{n}
An unlabeled example x specifies a hyper plane
The hyperplane divides the space into two halves

Predict the majority - say, predicted 1
If the true label is 0 , throw half space corresponding to 1
Repeat with new example

Gaussian Elimination

- Gaussian Elimination - Analysis
- Start with one set containing 2^{n} vectors as possible solutions
- Predict the majority of the labels of the remaining solutions by performing the intersection of the halfspace with the remaining subset
- At each mistake, throw at least half of the vectors

Gaussian Elimination

- Gaussian Elimination - Analysis
- After, at most $\log _{2} 2^{n}=n$ mistakes, only 1 vector remains $=$ hidden vector f
- Computing intersection in time $\mathrm{O}\left(n^{3}\right)$ by Gaussian elimination

Halving Algorithm

Halving Algorithm: Geometrically

Consider all k-sparse vectors in vector space \mathbb{F}_{n}^{2}

Halving Algorithm

Halving Algorithm: Geometrically

Consider all k-sparse vectors in vector space \mathbb{F}_{n}^{2}
An unlabeled example x specifies a hyper plane

Halving Algorithm

Halving Algorithm: Geometrically

Consider all k-sparse vectors in vector space \mathbb{F}_{n}^{2}
An unlabeled example x specifies a hyper plane
Predict the majority - say, predicted 1
If the true label is 0 , throw half space corresponding to 1

Repeat with new example

Halving Algorithm

- Halving Algorithm - Analysis
- Start with $\binom{n}{k}$ sets as possible solutions such that each k-sparse vector is in one subset.
- Predict the majority of the labels of the remaining solutions by performing the intersection of the halfspace with the remaining subset
- At each mistake, throw at least half of the vectors

Halving Algorithm

- Halving Algorithm - Analysis
- After, at most $\log _{2}\binom{n}{k}=k \log n$ mistakes, only 1 vector remains which is the hidden vector f
- Computing the intersection with all the sets in time $\binom{n}{k}$

The BGM algorithm

- Tries to balance both the extremes
- Consider a set of fewer subsets such that each k-sparse vector in at least one subset.
- Predict the label which has more weighted majority of subsets where weights are proportional to their sizes

The BGM algorithm

The BGM algorithm: Geometrically

Consider larger subsets of points such that each k-sparse point is present in some subset

The BGM algorithm

The BGM algorithm: Geometrically

Consider larger subsets of points such that each k-sparse point is present in some subset

An unlabeled example x specifies a hyper plane

The BGM algorithm

The BGM algorithm: Geometrically

Consider larger subsets of points such that each k-sparse point is present in some subset
An unlabeled example x specifies a hyper plane
Once true label is revealed, throw the irrelevant halfspace

The BGM algorithm

The BGM algorithm: Geometrically

Consider larger subsets of points such that each k-sparse point is present in some subset

An unlabeled example x specifies a hyper plane

Once true label is revealed, throw the irrelevant halfspace
Repeat with next example(or hyper plane)

The BGM algorithm formally

- Initialization:
- Let $f \in\{0,1\}^{n}$ be the k-sparse parity vector
- Let $e=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be the set of standard basis vectors of $\{0,1\}^{n}$
- Arbitrarily partition e into $t \leq n$ parts $C=C_{1}, C_{2}, \cdots, C_{t}$
- Let $S:=k$-subsets of C
- For each $s \in S$, let M_{s} be the span of $e_{i} \in s$. Thus, $\left|M_{s}\right| \leq 2^{k[n / t]}$

The BGM algorithm formally

- On receiving an example $x \in\{0,1\}^{n}$:
- For each M_{s}, let $M_{s}^{1}:=$ affine space of $\left\{M_{s}\right\} \cup\{x=1\}$
- Similarly, let $M_{s}^{0}:=$ affine space of $\left\{M_{s}\right\} \cup\{x=0\}$
- Note that $\left|M_{s}^{1}\right|=0,\left|M_{s}\right|$ or $\frac{\left|M_{s}\right|}{2}$
- Predict $y \in\{0,1\}$ such that $\sum_{s \in S}\left|M_{s}^{y}\right| \geq \sum_{s \in S}\left|M_{s}^{1-y}\right|$

The BGM algorithm formally

- On receiving answer $l \in\{0,1\}$:
- Update each $M_{s}=M_{s}^{z}$

The BGM algorithm - analysis

- Mistakes:
- Total number of vectors in the beginning $=\binom{t}{k} 2^{k[n / t]}$
- At each mistake, throw away at least half of the vectors
- Number of mistake $\leq \log \left(\binom{t}{k} 2^{k\left\lceil\frac{n}{t}\right\rceil}\right)=\boldsymbol{k}\left\lceil\frac{n}{t}\right\rceil+\boldsymbol{\operatorname { l o g }}\binom{t}{\boldsymbol{k}}$
- Running time:
- Per Round $\left.\mathbf{O}\binom{t}{k}\left(\frac{k n}{t}\right)^{2}\right)$

Our Algorithm

- Idea - Have slightly bigger subsets and pick slightly fewer of them
- The setup is same as BGM, but.....
- Partition e into $\boldsymbol{T}=\mathbf{1 0 0 0 t}$ parts $C=C_{1}, C_{2}, \cdots, C_{T}$
- Randomly pick $m, 1000 k$-sized subsets of [T]
- $m=\boldsymbol{O}\left(\frac{\binom{1000 t}{1000 k}}{\binom{100 t-k}{1000 k-k}}\right)$ ensures that with non zero probability each \boldsymbol{k}-sized subset of [T] is present in some S_{i}

Our Algorithm

- Crucial claim:

$$
\frac{\binom{T}{1000 k}}{\binom{T-k}{1000 k-k}} \leq e^{-k / 4.01}\binom{t}{k}
$$

- The analysis is same as BGM
- Mistake bound $=$ Mistake bound in BGM up to constant terms
- Running time $=\boldsymbol{e}^{-\boldsymbol{k} / 4.01} \times \mathrm{BGM}$

Relating the results to PAC model

- Standard conversion techniques [Angluin'88, Littlestone'89, Haussler'88]
- Allow our result to get an improvement in the PAC model

Learning k-Parity with noise

Learning k-Parity with noise (k-LPN)

- Best known algorithm - Grigorescu et al. (2011)

Time: $\binom{n}{k / 2}^{1+4 \eta^{2}+\mathrm{o}(1)} \quad$ Samples: $\frac{k \log n}{(1-2 \eta)^{2}} . \omega(1)$

- When $\eta \rightarrow \frac{1}{2}$, G. Valiant (2012) in time $\boldsymbol{n}^{0.8 k}$.poly $\left(\frac{1}{1-2 \eta}\right)$
- Barrier of $\binom{n}{k / 2}$ in running time!

Breaking the Barrier...

- We show an algorithm that for polynomially small but non trivial range of noise rates, it is possible to break this barrier
- For example, when $\eta=\Theta\left(\frac{1}{n^{2 / 5}}\right)$ and $k=\sqrt{n}$, then our algorithm
- Runs in time $\left.\boldsymbol{O}\binom{n}{k}^{\frac{1}{4}}\right)$
- With $\mathbf{O}\left(\boldsymbol{k} \cdot \boldsymbol{n}^{3 / 8}\right)$ samples

Breaking the Barrier... Algorithm

- Draw sufficiently many examples
- Guess a set of locations of a particular size (say $\frac{3 \eta}{2}$) of the mis-labelings and correct them
- Use the previous learner from the noiseless setting to get a candidate parity vector
- Repeat this for every guess set of that size
- Draw few more examples and pick the candidate parity vector which agrees with the most number of newly drawn samples

Open Questions

- Noiseless case:
- poly(n) algorithm with $O\left(\log \binom{n}{k}\right)$ samples - attribute efficient learning of parities
- Improving our trade-offs
- Noisy case:
- Lower bounds!
- Better algorithms [E.g., Karppa et.al. (2016)]

Thank you

Attribute efficient learning k-Parity without noise

- Learn k-parity in polynomial time with only $\boldsymbol{\operatorname { p o l }} \boldsymbol{y}\left(\log \binom{n}{k}\right)$ samples
- Best known algorithm using $O\left(\log \binom{n}{k}\right)$ samples, in time $o\left(n^{\frac{k}{2}}\right)$ [Spielman]

Our Result for noisy case

Theorem

Suppose $k(n)=n / f(n)$ for some function $f: \mathbb{N} \rightarrow \mathbb{N}$ for which $f(n) \ll n / \log \log n$, and suppose $\eta(n)=o\left(\frac{1}{\left((f(n))^{\alpha} \log n\right)}\right)$ for some $\alpha \in[1 / 2,1)$. Then, for constant confidence parameter, there exists an algorithm for k-lpn with noise rate η with running time $e^{-k / 4.01+o(k)} \cdot\binom{n}{k}^{1-\alpha} \cdot$ poly (n) and sample complexity $O\left(k(f(n))^{\alpha}\right)$.

For example, consider

$$
\begin{gathered}
k=\sqrt{n} \text { and } \eta=\frac{1}{n^{2 / 5}}<\frac{1}{n^{3 / 8}}, \\
\text { then } \alpha=\frac{3}{4} .
\end{gathered}
$$

In this case, the running time would be $\left.O\binom{n}{k}^{\frac{1}{4}}\right)$ and the sample complexity would $O\left(k\left(\frac{n}{k}\right)^{\frac{3}{4}}\right)$.

Learning k-Parity without noise

- Information theoretically, $O\left(\log \binom{n}{k}\right)$ samples
- Running time is $\mathrm{O}\left(n^{k}\right)$, improved to $\mathrm{O}\left(n^{\frac{k}{2}}\right)$
- Open question to get a polynomial algorithm with $O\left(\log \binom{n}{k}\right)$ samples

Online Mistake Bound model

- Different than the "black box" model (PAC)
- Learning proceeds in rounds
" Each round: "Oracle" teaches the "Learner"

Our results for noiseless case

- Let $k, t: \mathbb{N} \rightarrow \mathbb{N}$ be two functions such that $\log \log n \ll k(n) \ll t(n) \ll n$. Then for every $n \in \mathbb{N}$, there is an algorithm that learns k-parity in the mistake-bound model, with mistake bound at most $(1+o(1)) \frac{k n}{t}+\log \binom{t}{k}$ and running time per round $e^{-k / 4.01} \cdot\binom{t}{k} \cdot \tilde{O}\left(\left(\frac{k n}{t}\right)^{2}\right)$.

BGM'10

- Let $k, t: \mathbb{N} \rightarrow \mathbb{N}$ be two functions such that $k(n) \leq t(n) \leq n$. For every $n \in \mathbb{N}$, there is a deterministic algorithm that learns k-parity in the mistake-bound model, with mistake bound $k\left\lceil\frac{n}{t}\right\rceil+\left\lceil\log \binom{t}{k}\right\rceil$ and running time per round $O\left(\binom{t}{k}\left(\frac{k n}{t}\right)^{2}\right)$.

Our results for noiseless case

- Let $k, t: \mathbb{N} \rightarrow \mathbb{N}$ be two functions such that $\log \log n \ll k(n) \ll t(n) \ll n$. Then for every $n \in \mathbb{N}$, there is an algorithm that learns k-parity in the mistake-bound model, with mistake bound at most $(1+o(1)) \frac{k n}{t}+\log \binom{t}{k}$ and running time per round $e^{-k / 4.01} \cdot\binom{t}{k} \cdot \tilde{O}\left(\left(\frac{k n}{t}\right)^{2}\right)$.

BGM'10

- Let $k, t: \mathbb{N} \rightarrow \mathbb{N}$ be two functions such that $k(n) \leq t(n) \leq n$. For every $n \in \mathbb{N}$, there is a deterministic algorithm that learns k-parity in the mistake-bound model, with mistake bound $k\left\lceil\frac{n}{t}\right\rceil+\left\lceil\log \binom{t}{k}\right\rceil$ and running time per round $O\left(\binom{t}{k}\left(\frac{k n}{t}\right)^{2}\right)$.

Add a Slide Title - 2

